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Unified ab initio approach to bound and unbound states:

no-core shell model with continuum and its application to 7He
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We introduce a unified approach to nuclear bound and continuum states based on the coupling of
the no-core shell model (NCSM), a bound-state technique, with the no-core shell model/resonating
group method (NCSM/RGM), a nuclear scattering technique. This new ab initio method leads to
convergence properties superior to either NCSM or NCSM/RGM while providing a balanced ap-
proach to different classes of states. In the NCSMC, the ansatz for the many-nucleon wave function
includes: i) a square-integrable A-nucleon component expanded in a complete harmonic oscillator ba-
sis; ii) a binary-cluster component with asymptotic boundary conditions that can properly describe
weakly-bound states, resonances and scattering; and, in principle, iii) a three-cluster component
suitable for the description of, e.g., Borromean halo nuclei and reactions with final three-body states.
The Schrödinger equation is transformed into a system of coupled-channel integral-differential equa-
tions that we solve using a modified microscopic R-matrix formalism within a Lagrange mesh basis.
We demonstrate the usefulness of the approach by investigating the unbound 7He nucleus.

PACS numbers: 21.60.De,24.10.Cn,25.10.+s,27.20.+n

I. INTRODUCTION

One of the central goals of nuclear physics is to come
to a basic understanding of the structure and dynamics
of nuclei, quantum many-body systems exhibiting bound
states, unbound resonances, and scattering states, all of
which can be strongly coupled. Ab initio (i.e., from
first principles) approaches attempt to achieve such a
goal for light nuclei. Over the past fifteen years, ef-
ficient techniques such as the Green’s function Monte
Carlo (GFMC) [1], ab initio NCSM [2], Coupled Cluster
Method (CCM) [3–5] or nuclear lattice effective field the-
ory (EFT) [6] have greatly advanced our understanding
of bound-state properties of light nuclei starting from re-
alistic nucleon-nucleon (NN) and three-nucleon (NNN)
interactions. On the other hand, a fully-developed fun-
damental theory able to address a large range of nuclear
scattering and nuclear reaction properties is still miss-
ing, particularly for processes involving more than four
nucleons overall. Better still, achieving a realistic ab ini-

tio description of light nuclei requires abandoning the
“traditional” separated treatment of discrete states and
scattering continuum in favor of a unified treatment of
structural and reaction properties.

The development of such a unified fundamental theory
is key to refining our understanding of the underlying
forces across the nuclear landscape: from the well-bound
nuclei to the exotic nuclei at the boundaries of stability
that have become the focus of the next generation exper-
iments with rare-isotope beams, to the low-energy fusion

∗E-mail: simone.baroni@ulb.ac.be
†E-mail: navratil@triumf.ca
‡E-mail: quaglioni1@llnl.gov

reactions that represent the primary energy-generation
mechanism in stars, and could potentially be used for
future energy generation on earth.

In the recent past, significant effort has been devoted
to extend ab initio techniques to the treatment of dy-
namical processes among light nuclei [7–9]. To this
aim, we introduced a new many-body approach based
on expansions over fully-antisymmetric (A−a, a) binary-
cluster states in the spirit of the resonating-groupmethod
(RGM) [10–15], in which each cluster of nucleons is de-
scribed within the ab initio NCSM [16]. The unknown
relative-motion wave functions between pairs of clus-
ters are obtained by solving a set of non-local integral-
differential coupled-channel equations and have appropri-
ate bound-state and/or scattering asymptotic behavior.
Capable of treating bound and scattering states of light
nuclei in a unified formalism starting from the funda-
mental inter-nucleon interactions, the NCSM/RGM ap-
proach [8, 17] has been successfully applied to a wide va-
riety of binary processes, such as nucleon-4He and n−7Li
scattering [18], 7Be(p,γ)8B capture [19], d−4He scatter-
ing [20], 3H(d,n)4He, and 3He(d,p)4He fusion [21], and
an extension to the treatment of three-cluster dynam-
ics is under development [22, 23]. At the same time,
these studies have highlighted practical limitations of the
approach mainly related to a non-entirely efficient con-
vergence behavior at short-to-medium distances, as dis-
cussed in the following.

Two kinds of convergence patterns have to be taken
into account when performing a NCSM/RGM calcula-
tion. First, one has to investigate the dependence on
the size of the harmonic oscillator (HO) basis used to
expand the NCSM eigenstates of the clusters and local-
ized components of the couplings between binary-cluster
states. This size is characterized by Nmax, the maxi-
mal number of HO excitations above the lowest possi-
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ble configuration of the clusters. With soft similarity-
renormalization-group (SRG) [24–27] evolved chiral EFT
NN interactions [28, 29], employed in most NCSM/RGM
calculations, HO basis sizes with Nmax ∼ 10−14 are typi-
cally sufficient to reach convergence and computationally
feasible. Second, one has to study the convergence with
respect to the number of clusters’ eigenstates included in
the calculation. While including only the ground state
(g.s.) of the tightly-bound 4He in nucleon-4He scattering
calculations already leads to a very good approximation
of the A = 5 scattering phase shifts [18], the descrip-
tion of the low-energy 7Be(p,γ)8B capture required tak-
ing into account the lowest five eigenstates of 7Be [19].
The convergence with the number of clusters’ eigenstates
becomes even more problematic for weakly-bound clus-
ters. Calculations with composite projectiles (the lighter
of the two clusters) such as 2H, 3H, and 3He, show that
it is essential to take into account the virtual breakup of
these systems even at energies much below the breakup
threshold. Presently, this is achieved by including a large
number of excited pseudostates [20, 21, 30] of the projec-
tile. This in turn results in a dramatic increase of com-
plexity of the calculations as a large number of channels
are coupled.
In this paper we present a more efficient approach to

nuclear bound and continuum states, the no-core shell
model with continuum (NCSMC). We adopt an extended
model space that, in addition to the continuous binary-
cluster (A− a, a) NCSM/RGM states, encompasses also
square-integrable NCSM eigenstates of the A-nucleon
system. Such eigenstates introduce in the trial wave
function short- and medium-rangeA-nucleon correlations
that in the NCSM/RGM formalism have to be treated
by including a large number of excited states of the clus-
ters. An analogous approach was suggested already in
the original RGM papers [10, 11]. The idea behind the
NCSMC was first mentioned in our review paper [31]
and the formalism was succinctly introduced in Ref. [32],
where it was applied to study of the low-lying resonances
of the exotic 7He nucleus using an SRG-evolved chiral
EFT NN potential that provides an accurate descrip-
tion of the NN system. Here, we give a detailed presen-
tation of the formalism, discuss the results published in
Ref. [32], and present additional results.
In Sec. II, we briefly review the NCSM and

NCSM/RGM approaches and then introduce in detail
the NCSMC formalism. In Sec. III, we apply the NC-
SMC to the exotic 7He nucleus. We discuss calculations
presented in Ref. [32] as well as additional results. Con-
clusions and outlook are given in Sect. IV. Parts of the
formalism not suitable for the main text are presented in
Appendix A.

II. FORMALISM

This section is dedicated to the formalism of the NC-
SMC theory with a particular focus on the case in which

the binary-cluster portion of the basis is given by a single-
nucleon projectile in relative motion with respect to an
(A− 1)-nucleon target. First, in Sec. II A, we briefly re-
view the NCSM, then in Sec. II B we present useful back-
ground and expressions for the NCSM/RGM formalism.
Finally, in Sec. II C we introduce in detail the NCSMC.

A. NCSM

The ab initio NCSM is a structure technique appro-
priate for the description of bound states or for approx-
imations of narrow resonances. Nuclei are considered as
systems of A non-relativistic point-like nucleons inter-
acting through realistic inter-nucleon interactions, i.e.,
those that describe accurately two-nucleon and, possibly,
three-nucleon systems. All nucleons are active degrees
of freedom. Translational invariance as well as angular
momentum and parity of the system under considera-
tion are conserved. The many-body wave function is cast
into an expansion over a complete set of antisymmetric
A-nucleon HO basis states containing up to Nmax HO
excitations above the lowest possible configuration:

|ΨJπT
A 〉 =

Nmax
∑

N=0

∑

i

cNi|ANiJπT 〉 . (1)

Here, N denotes the total number of HO excitations of
all nucleons above the minimum configuration, JπT are
the total angular momentum, parity and isospin, and i
additional quantum numbers. The sum over N is re-
stricted by parity to either an even or odd sequence. The
basis is further characterized by the frequency Ω of the
HO well and may depend on either Jacobi relative or
single-particle coordinates. In the former case, the wave
function does not contain the center of mass (c.m.) mo-
tion, but antisymmetrization is complicated. In the lat-
ter case, antisymmetrization is trivially achieved using
Slater determinants, but the c.m. degrees of freedom are
included in the basis. The HO basis within the Nmax

truncation is the only possible one that allows an exact
factorization of the c.m. motion for the eigenstates, even
when working with single-particle coordinates and Slater
determinants. Calculations performed with the two al-
ternative coordinate choices are completely equivalent.
Square-integrable energy eigenstates expanded over

the Nmax~Ω basis, |ANiJπT 〉, are obtained by diago-

nalizing the intrinsic Hamiltonian, Ĥ = T̂int + V̂ ,

Ĥ |AλJπT 〉 = Eλ|AλJπT 〉 , (2)

where T̂int is the internal kinetic energy operator and V̂
the NN or NN+NNN interaction. Convergence of the
HO expansion with increasing Nmax values is accelerated
by the use of effective interactions derived from the un-
derlying potential model through either Lee-Suzuki simi-
larity transformations in the NCSM space [16, 33] or SRG
transformations in momentum space [24–27, 34, 35]. In
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this latter case, the NCSM calculations are variational.
Finally, we note that with the HO basis sizes typically
used (Nmax∼10−14), the |AλJπT 〉 eigenstates lack cor-
rect asymptotic behavior for weakly-bound states and al-
ways have incorrect asymptotic behavior for resonances.

B. NCSM/RGM

In the NCSM/RGM, the ansatz of Eq. (1) for the
A-nucleon wave function is replaced by an expansion
over antisymmetrized products of binary-cluster channel
states |ΦJπT

νr 〉 and wave functions of their relative motion

|ΨJπT
A 〉 =

∑

ν

∫

dr r2
γν(r)

r
Âν |ΦJπT

νr 〉 . (3)

The channel states |ΦJπT
νr 〉 contain (A−a)- and a-nucleon

clusters (with a ≤ A) of total angular momentum, parity,
isospin and additional quantum number I1, π1, T1, α1 and
I2, π2, T2, α2, respectively, and are characterized by the
relative orbital angular momentum ℓ and channel spin

~s = ~I1 + ~I2:

|ΦJπT
νr 〉 =

[

(|A− a α1I
π1
1 T1〉|a α2I

π2
2 T2〉)(sT )

× Yℓ(r̂A−a,a)
](JπT ) δ(r − rA−a,a)

rrA−a,a
. (4)

The channel index ν collects the quantum numbers
{A− a α1I

π1
1 T1; a α2I

π2
2 T2; sℓ}. The intercluster relative

vector ~rA−a,a is the displacement between the clusters’
centers of mass and is given in terms of the single-particle
coordinates ~ri by:

~rA−a,a = rA−a,ar̂A−a,a =
1

A− a

A−a
∑

i=1

~ri −
1

a

A
∑

j=A−a+1

~rj .

(5)
The cluster wave functions depend on translationally in-
variant internal coordinates and are antisymmetric under
exchange of internal nucleons, while the intercluster an-
tisymmetrizer Âν takes care of the exchange of nucleons
belonging to different clusters.
With appropriate boundary conditions imposed on the

wave functions of the relative motion γν(r), the expan-
sion of Eq. (3) is suitable for describing bound states,
resonances and scattering states between clusters. For
bound states, expansions (1) and (3) are equivalent, al-
though for well-bound systems where short-rangeA-body
correlations play a dominant role, the convergence of the
eigenenergy would typically be more efficient within the
NCSM model space defined by Eq. (1).
The unknown relative-motion wave functions γν(r) are

determined by solving the many-body Schrödinger equa-
tion in the Hilbert space spanned by the basis states
Âν |ΦJπT

νr 〉:
∑

ν

∫

dr r2
[

HJπT
ν′ν (r′, r) − EN JπT

ν′ν (r′, r)
] γν(r)

r
= 0 ,

(6)

where

HJπT
ν′ν (r′, r) =

〈

ΦJπT
ν′r′

∣

∣

∣
Âν′ĤÂν

∣

∣

∣
ΦJπT

νr

〉

, (7)

N JπT
ν′ν (r′, r) =

〈

ΦJπT
ν′r′

∣

∣

∣
Âν′Âν

∣

∣

∣
ΦJπT

νr

〉

, (8)

are the Hamiltonian and norm kernels, respectively, and
E is the total energy in the c.m. frame.
When computing Eqs. (7) and (8), the “exchange”

terms of the norm kernel arising from the non-identical
permutations in Âν as well as all localized parts of the
Hamiltonian kernel are obtained by expanding the radial
dependence of the basis states of Eq. (4) on HO radial
wave functions Rnℓ(r) according to:

|ΦJπT
νr 〉 =

∑

n∈P

Rnℓ(r)|ΦJπT
νn 〉 , (9)

where P indicates the HO model space and

|ΦJπT
νn 〉 =

[

(|A− a α1I
π1
1 T1〉|a α2I

π2
2 T2〉)(sT )

× Yℓ(r̂A−a,a)
](JπT )

Rnℓ(rA−a,a) . (10)

Here, we remind that the A-nucleon microscopic
Hamiltonian can be written in the form

Ĥ = T̂rel + V̂rel + V̂C(r) + Ĥ(A−a) + Ĥ(a) , (11)

where T̂rel is the relative kinetic energy between target
and projectile, V̂rel includes all the interactions between
nucleons belonging to different clusters after subtraction
of the average Coulomb interaction between them V̂C(r)
(see [17] for a detailed discussion on this point), and

Ĥ(A−a) and Ĥ(a) are the intrinsic microscopic Hamilto-
nians for A − a and a nucleons, respectively. The same
inter-nucleon interactions are consistently employed in
each term of Eq. (11). Accordingly, the clusters’ eigen-
states |A − a α1I

π1
1 T1〉 and |a α2I

π2
2 T2〉 are obtained

by NCSM diagonalization of their respective microscopic
Hamiltonians Ĥ(A−a) and Ĥ(a). The same frequency and
consistent model-space size are used in the HO expan-
sions of the clusters and localized parts of the integra-
tion kernels. The size Nmax of the HO model space is the
same for states of the same parity, whereas it differs by
one unit for states of opposite parity.
While the NCSM/RGM formalism has been fully de-

veloped for single- (a = 1) [17], two- (a = 2) [20] and
three-nucleon (a = 3) projectiles [30], and can be also
extended to a = 4 projectiles as well as to three-body
clusters [23], in this work we limit ourselves to the a = 1
case, where the inter-cluster antisymmetrizer is defined
as

Âν ≡ 1√
A

(

1−
A−a
∑

i=1

P̂iA

)

, (12)

and P̂i,A is the permutation operator exchanging the i-th
particle in the target with the projectile nucleon, labeled
by the index A.
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1. Orthogonalization in the NCSM/RGM

Here, we recall some of the details concerning the or-
thogonalization of the NCSM/RGM equations (6) that
are useful for our further discussion of the NCSMC for-
malism.
Because of the non-identical permutations in the inter-

cluster antisymmetrizer, the channel states Aν |ΦJπT
νr 〉 are

not orthonormal to each other. In general, we prefer to
work with the orthonormalized binary-cluster states

∑

ν′

∫

dr′r′
2 N− 1

2

νν′ (r, r
′) Âν′ |ΦJπT

ν′r′ 〉 , (13)

where we introduced the inverse square root of the
NCSM/RGM norm kernel (8). In the following we re-
view how this as well as the square root of the norm
kernel are obtained.

As anticipated in the previous section, the “exchange”
term arising from the permutations in Âν that differ
from the identity are obtained using the HO expansion
of Eq. (9). Hence, using Eqs. (12) and (10), the r-space
representation of the norm kernel can be written as

N JπT
νν′ (r, r′) = δνν′

δ(r − r′)

rr′
− (A− 1)

∑

n,n′

Rnℓ(r)〈ΦJπT
νn |P̂A−1,A|ΦJπT

ν′n′ 〉Rn′ℓ′(r
′)

= δνν′

[

δ(r − r′)

rr′
−
∑

nn′∈P

Rnℓ(r)δnn′Rn′ℓ′(r
′)

]

+
∑

nn′∈P

Rnℓ(r)N JπT
νnν′n′Rn′ℓ′(r

′) , (14)

where we introduced the model-space norm kernel:

N JπT
νnν′n′ = δνν′δnn′ − (A− 1)

∑

n,n′∈P

Rnℓ(r)Rn′ℓ′(r
′)

× 〈ΦJπT
νn |P̂A−1,A|ΦJπT

ν′n′ 〉 . (15)

The last line of Eq. (14) shows that the r-space repre-
sentation of the kernel is given by the convolution of the
model-space kernel (second term) plus a correction due
to the finite size of the model space P (first term). Square

and inverse-square roots N± 1
2

νν′ (r, r′) can then be defined
in an analogous way as:

N± 1
2

νν′ (r, r
′)

= δνν′

[

δ(r − r′)

rr′
−
∑

nn′∈P

Rnℓ(r)δnn′Rn′ℓ′(r
′)

]

+
∑

nn′∈P

Rnℓ(r)N± 1
2

νnν′n′Rn′ℓ′(r
′) , (16)

where the model-space square and inverse square roots

N± 1
2

νnν′n′ are obtained from the spectral theorem.

The NCSM/RGM Hamiltonian kernel within the or-
thonormal basis of Eq. (13),

Hνν′(r, r′) (17)

=
∑

µµ′

∫ ∫

dydy′y2y′
2N− 1

2
νµ (r, y)Hµµ′ (y, y′)N− 1

2

µ′ν′(y
′, r′)

is obtained from the hermitized Hamiltonian kernel,

Hνν′(r, r′)=〈ΦJπT
νr |1

2
(Â2Ĥ − ĤÂ2)|ΦJπT

ν′r′ 〉 (18)

=〈ΦJπT
νr |Ĥ− 1

2
(Ĥ

A−a
∑

i

P̂iA−
A−a
∑

i

P̂iAĤ)|ΦJπT
ν′r′ 〉,

for which we have borrowed the same notationHνν′(r, r′)
used previously in Eq. (7).
Finally, the orthogonalized RGM equations read

∑

ν′

∫

dr′r′ 2Hνν′ (r, r′)
χν′(r′)

r′
= E

χν(r)

r
, (19)

with the wave functions of the relative motion χν(r) re-
lated to the original functions γν(r) by

χν(r)

r
=
∑

ν′

∫

dr′r′
2N+ 1

2

νν′ (r, r
′)
γν′(r′)

r′
. (20)

For more details on the NCSM/RGM kernels we refer the
interested reader to Ref. [17].

C. NCSMC

The NCSMC ansatz for the many-body wave function
includes both A-body square-integrable and (A − a, a)
binary-cluster continuous basis states according to:

|ΨJπT
A 〉 =

∑

λ

cλ|AλJπT 〉+
∑

ν

∫

dr r2
γν(r)

r
Âν |ΦJπT

νr 〉.

(21)
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The resulting wave function (21) is capable of describing
efficiently both bound and unbound states. Indeed, the
NCSM sector of the basis (eigenstates |AλJπT 〉) provides
an effective description of the short- to medium-range
A-body structure, while the NCSM/RGM cluster states
make the theory able to handle the scattering physics of
the system. In other words, with the expansion (21) one
obtains the coupling of the NCSM with the continuum.
Clearly, the NCSMC model space is overcomplete, but
this is not a concern, as it will be shown in the following.

1. NCSMC equations

The discrete (cλ) and continuous (γν(r)) unknowns of
the NCSMC wave function are obtained as solutions of
the coupled equations

(

HNCSM h̄
h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (22)

where χν(r) are the relative wave functions in the
NCSM/RGM sector when working with the orthogonal-
ized cluster channel states of Eq. (13). These are related
to the original wave functions γν(r) of Eq. (21) by the re-
lationship (20). Note, however, that the χν(r) appearing
in Eqs. (19) and (22) are in general different, i.e., they
are solutions of different equations.
The NCSM sector of the Hamiltonian kernel is a diag-

onal matrix of the NCSM energy eigenvalues Eλ (2),

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = Eλδλλ′ , (23)

while H is the orthogonalized NCSM/RGM kernel of
Eq. (17). Because of the orthogonalization procedure of
Sec. II B 1, both diagonal blocks in the NCSMC norm
kernel N are identities in their respective spaces

Nλλ′

νrν′r′ =

(

δλλ′ ḡλν′(r′)

ḡλ′ν(r) δνν′

δ(r−r′)
rr′

)

. (24)

The coupling between square-integrable and binary-
cluster sectors of the model space is described by the
cluster form factor

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N
− 1

2

ν′ν (r
′, r)

(25)
in the norm kernel, and by the coupling form factor

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N
− 1

2

ν′ν (r
′, r).

(26)
in the Hamiltonian kernel. Detailed expressions for these
form factors are given in Appendix A. The calculation
of 〈AλJπT |ÂνΦ

JπT
νr 〉 overlap matrix elements between

NCSM wave functions and binary-cluster states was also
discussed in Ref. [36]. We also note that by squaring the
absolute value of these matrix elements and integrating
over r, one obtains spectroscopic factors.

The NCSMC equations can be orthogonalized in an
analogous way to that presented for the NCSM/RGM in
Sec. II B 1. To define the square and inverse square root
of the NCSMC norm in the r-space representation, we
first rewrite Eq. (24) as the convolution of the model-
space norm kernel plus a correction for the finite size of
the HO model-space P

Nλλ′

νrν′r′

=

(

0 0

0 δνν′

δ(r−r′)
rr′ − δνν′Rnℓ(r)δnn′Rn′ℓ′(r

′)

)

+

(

δλλ̃ 0
0 Rνrν̃n

)

N λ̃λ̃′

ν̃n ν̃′n′

(

δλ̃′λ′ 0
0 Rν′r′ν̃′n′

)

,

(27)

where the sum over the repeating indexes λ̃, ν̃, n, λ̃′, ν̃′,
and n′ is implied, the notation Rνrν̃n stands for
Rnℓ(r)δνν̃ , and the model-space NCSMC norm is given
by:

N λ̃λ̃′

ν̃n ν̃′n′ =

(

δλ̃λ̃′ ḡλ̃ν̃′n′

ḡλ̃′ν̃n δν̃ν̃′δnn′

)

. (28)

Here, the model-space cluster form factor is related to the
r-space one through ḡλν(r) =

∑

n Rnl(r)ḡλνn (as demon-
strated in Appendix A). Accordingly, the square and
inverse square roots of N can then be defined as:

(N± 1
2 )λλ

′

νrν′r′

=

(

0 0

0 δνν′

δ(r−r′)
rr′ −Rnℓ(r)δνν′δnn′Rn′ℓ′(r

′)

)

+

(

δλλ̃ 0
0 Rνrν̃n

)

(N± 1
2 )λ̃λ̃

′

ν̃n ν̃′n′

(

δλ̃′λ′ 0
0 Rν′r′ν̃′n′

)

.

(29)

Inserting the identity N− 1
2N+ 1

2 in both left- and right-
hand sides of Eq. (22) and multiplying by N− 1

2 from the
left one obtains the orthogonalized NCSMC equations

H

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

, (30)

where the orthogonalized Hamiltonian is given by,

H = N− 1
2

(

HNCSM h̄
h̄ H

)

N− 1
2 , (31)

and the orthogonal wave functions by:

(

c̄
χ̄

)

= N+ 1
2

(

c
χ

)

. (32)

Finally, the ansatz (21) in terms of the orthogonalized
NCSMC wave function takes the form:
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|ΨJπT
A 〉 =

∑

λ

|AλJπT 〉
[

∑

λ′

(N− 1
2 )λλ

′

c̄λ′ +
∑

ν′

∫

dr′ r′2(N− 1
2 )λν′r′

χ̄ν′(r′)

r′

]

+
∑

νν′

∫

dr r2
∫

dr′ r′2Âν |ΦJπT
νr 〉N− 1

2

νν′ (r, r
′)

[

∑

λ′

(N− 1
2 )λ

′

ν′r′ c̄λ′ +
∑

ν′′

∫

dr′′ r′′2(N− 1
2 )ν′r′ν′′r′′

χ̄ν′′(r′′)

r′′

]

.(33)

2. Solving the NCSMC equations

At large inter-cluster distances r, the clusters are as-
sumed to interact through the Coulomb interaction only.
Hence, the NCSMC equations are solved dividing the
space into an internal region, r 6 r0, and an external
region, r > r0, and applying the coupled-channel micro-
scopic R-matrix method on a Lagrange mesh [37]. The
separation radius r = r0 must be large enough to ensure
that the wave function of the A-body states |AλJπT 〉
vanishes when approaching the external region, where
the asymptotic behavior of the NCSMC solutions is de-
scribed entirely by the radial wave functions

uJπT
ν (r) = CJπT

ν Wℓ(ην , κνr), (34)

and

uJπT
ν (r) =

i

2
v
− 1

2
ν [δνiH

−
ℓ (ην , κνr)− SJπT

νi H+
ℓ (ην , κνr)]

(35)

for bound and scattering states, respectively. Here,
Wl(ην , κνr) are Whittaker functions andH±

l (ην , κνr) are
the incoming and outgoing Coulomb functions, with vν
the speed, κν the wave number, and ην the Sommerfeld
parameter of the final state being studied. Asymptotic
normalization constant for bound states and scattering
matrix between initial (i) and final (ν) scattering states
are denoted respectively with CJπT

ν and SJπT
νi . The func-

tions uJπT
ν (r) stand for either the non-orthogonalized

wave function χν(r) or for the orthogonalized χ̄ν(r) ac-
cording to which set of equations, Eq. (22) or (30), is
being considered.
One of the advantages of the microscopic R-matrix

method is that the wave function in the internal re-
gion can be expanded on a set of square-integrable func-
tions. A particularly convenient choice when dealing
with non-local potentials, as in our case, is the set of
Lagrange functions fn(r) associated with the shifted
Legendre polynomials and defined on the mesh points
rn ∈ (0, r0) [37], labeled by the index 1 ≤ n ≤ N . When
the Gauss quadrature approximation is adopted, the La-
grange functions are orthogonal to each other. In addi-
tion, thanks to the Gauss quadrature approximation and
the properties of the Lagrange functions, matrix elements
of non-local potentials are proportional to the values of
the non-local potentials at the mesh points. The number
of mesh points N has to be large enough to guarantee

an accurate representation of the wave functions in the
internal region up to the matching radius r0. Typically,
25 mesh points are sufficient to calculate a phase shift
within six significant digits for r0 = 15 fm.
The matching between internal and external regions,

and hence the imposition of the asymptotic behavior of
Eqs. (34) and/or (35), is ensured by the Bloch surface
operator (here generalized to account for the A-body
square-integrable sector of our basis)

L̂ν =

(

0 0

0 ~
2

2µν
δ(r − a)( d

dr − Bν

r )

)

(36)

and solving the Bloch-Schrödinger equations

(H + L̂− E)

(

c̄
χ̄

)

= L̂

(

c̄
χ̄

)

. (37)

The operator H + L̂ is Hermitian when the boundary
parameter Bν is real. Because of the Bloch operator,
the wave function in the right-hand side of Eq. (37) can
be replaced by its asymptotic behavior. When searching
for bound states, Bν is chosen in such a way that the
right-hand side vanishes, and one is left with the diago-
nalization problem:

(H + L̂)

(

c̄
χ̄

)

= E

(

c̄
χ̄

)

. (38)

For scattering states, the scattering matrix and the scat-
tering wave functions are computed by solving Eq. (37)
with the boundary parameter Bν = 0 for each value of
the relative kinetic energy Ekin of the projectile-target
system. The phase shifts δ(Ekin) can then be extracted
from the S-matrix. Energetically open and closed chan-
nels are treated on equal footing.

III. APPLICATION TO 7He

The 7He nucleus is a particle-unstable system with a
JπT = 3/2− 3/2 ground state lying at 0.430(3)MeV
[38, 39] above the 6He+n threshold and an excited 5/2−

resonance centered at 3.35MeV, which mainly decays to
α+3n (as discovered in the pioneering work of Ref. [40]).
While there is a general consensus on the 5/2− state, dis-
cussions are still open for the other excited states. In par-
ticular, the existence of a low-lying (ER∼1 MeV) narrow
(Γ ≤ 1 MeV) 1/2− state has been advocated by many
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experiments [41–45] (most of them using knockout reac-
tions with a 8He beam on a carbon target), while it was
not confirmed in several others [46–51]. This contradic-
tory situation arises from the main experimental diffi-
culty of measuring the properties of 7He excited states
in the presence of a three-body background of 6He plus
n (coming from the particle decay of 7He) plus a third
outgoing particle involved in the reaction used to pro-
duce 7He. In addition, as it has been pointed out in
one of the most recent experimental works [51], some of
the earlier data could have been affected by background
noise coming from the interaction with the carbon tar-
get, while a polypropylene (CH2)n target would reduce
the background contamination. The presence of a low-
lying 1/2− state has also been excluded at the 90% con-
fidence level by a study on the isobaric analog states of
7He in 7Li [52]. According to this work, a broad 1/2−

resonance at ∼3.5MeV with a width Γ∼10MeV fits the
data the best. Neutron pick-up and proton-removal reac-
tions [48, 49] suggest instead a 1/2− resonance at about
3MeV with a width Γ ≈ 2MeV.
From a theoretical point of view, 7He is an ideal system

to showcase new achievements made possible by a uni-
fied ab initio approach to nuclear bound and continuum
states such as the NCSMC. Since 7He is unbound, it can-
not be reasonably described within the NCSM. One could
calculate its properties using the NCSM/RGM within an
6He+n binary-cluster expansion. However, the 6He nu-
cleus is weakly bound and all its excited states are un-
bound. Consequently, a limitation to just a few lowest
6He eigenstates in the NCSM/RGM expansion would be
questionable especially because, except for the lowest 2+

state, all other 6He excited states are either broad res-
onances or simply states in the continuum. As we will
show in the following, with the NCSMC these challenges
are overcome. Finally, for this study we use the SRG
evolved [24–27] chiral N3LONN potential (500MeV cut-
off) of Refs. [28, 29]. For the time being, the induced and
initial chiral three-nucleon interactions are not included
in the calculations, therefore our results depend on the
low-momentum SRG evolution parameter Λ. However,
by selecting Λ = 2.02 fm−1, we obtain very realistic
binding energies for the lightest nuclei, e.g., the 4He (see
Table I) and, more importantly for the present investi-
gation, the 6He. Consequently, this choice of NN poten-
tial allows us to perform qualitatively and quantitatively
meaningful calculations for 7He that can be compared
to experiment. In the following sections, we discuss the
convergence of the NCSMC calculation and compare it
to the corresponding NCSM and NCSM/RGM results.
We will also address the controversial issue of a low-lying
1/2− resonance in 7He.

A. 6He and 7He NCSM calculations

We begin our discussion of results with NCSM calcu-
lations for 6He that will generate eigenstates needed as

Eg.s. [MeV] 4He 6He 7He

NCSM Nmax=12 -28.05 -28.63 -27.33

NCSM extrap. -28.22(1) -29.25(15) -28.27(25)

Expt. -28.30 -29.27 -28.84

TABLE I: Ground-state energies of 4,6,7He in MeV. NCSM
calculations were performed with the SRG-N3LO NN poten-
tial with Λ = 2.02 fm−1. The HO frequency ~Ω=16 MeV
was used in the shown Nmax=12 calculations. Exponential
extrapolation was employed.

input for the subsequent NCSM/RGM and NCSMC in-
vestigations of 7He.
Our calculated 6He ground-state energies for a range

of HO frequencies and various basis sizes (Nmax values)
are presented in Fig. 1. The variational NCSM calcula-
tions converge rapidly and can be easily extrapolated to
Nmax → ∞ using, e.g., an exponential function of the
type E(Nmax) = E∞ + a e−bNmax . Results of such an ex-
trapolation are shown in Fig. 2 where theNmax=8, 10 and
12 points were used to determine the fitting parameters.
The extrapolated ground-state energy with its error es-
timate, based on extrapolations at other frequencies and
different point selections, and the calculated energy at
Nmax = 12, ~Ω = 16 MeV are given in Table I. The
calculated 6He g.s. energy agrees quite well with experi-
ment on both the absolute value and the separation with
respect to the 4He+2n threshold.
As shown in Fig. 1, atNmax = 12 the dependence of the

6He g.s. energy on the HO frequency is flat in the range
of ~Ω ∼ 16 − 19 MeV. In general, when working within
an HO basis, lower frequencies are better suited for the
description of unbound systems. Therefore, we choose

12 13 14 15 16 17 18 19 20 21 22
hΩ [MeV]
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-1 

FIG. 1: (color online). Ground-state energy of 6He calculated
within the NCSM using the SRG-N3LO NN potential with
Λ = 2.02 fm−1. The dependence on the HO frequency for
different Nmax basis sizes is shown. The points with error
bars represent the results of the exponential extrapolation.
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FIG. 2: (color online). Basis size Nmax dependence of 6He
and 7He ground-state energies calculated within the NCSM.
The SRG-N3LO NN potential with Λ = 2.02 fm−1 and the
HO frequency of ~Ω=16 MeV were used. Exponential extrap-
olations from the last three Nmax points is shown.

~Ω = 16 MeV for the calculation of the other 6He eigen-
states that will be used as input for the NCSM/RGM
and NCSMC investigations of the 7He nucleus. At the
same time, we also performed NCSM/RGM and NCSMC
calculations with ~Ω = 19 MeV, to test the stability of
our results against this parameter. Calculated 6He exci-
tation energies for basis sizes up to Nmax = 12 are shown
in Fig. 3. The 6He nucleus is a is a weakly-bound Bor-
romean system. All its excited states are unbound, and,
except for the lowest 2+, either broad resonances or states
in the continuum. The excitation energy of the 2+1 state
is fairly stable with respect to the basis size of our NCSM
calculations. The higher excited states, however, drop in
energy with increasing Nmax with the most dramatic ex-
ample being the multi-particle-hole 0+3 state. This spells
a potential difficulty for the NCSM/RGM calculations
as, with increasing density of 6He states at low energies,
a truncation of the model space to include just the few
lowest eigenstates becomes questionable. In addition, in
a NCSM/RGM study of 7He one should also consider the
contribution of binary-cluster states in which the neutron
is coupled to negative-parity states of 6He, where similar
issues arise.
Next we performed NCSM calculations for 7He ground

and excited states, which will serve as input to the NC-
SMC calculations described in the next section. The cal-
culated g.s. energy for different basis sizes is shown in
Fig. 2 together with the exponential extrapolation and
the 6He g.s. energies discussed earlier. The largest-space
values and the extrapolated energies are also given in Ta-
ble I. The NCSM calculation predicts 7He unbound in
agreement with experiment. However, the resonance en-
ergy with respect to the 6He+n threshold appears overes-
timated (contrary to the 6He↔4He+2n case). Obviously,
it is not clear that the ad hoc exponential extrapolation
is valid for the unbound states. Or, it may have a siz-
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FIG. 3: (color online). Dependence of 6He excitation ener-
gies on the size of the basis Nmax. NCSM calculations were
performed with the SRG-N3LO NN potential with Λ = 2.02
fm−1 and the HO frequency of ~Ω=16 MeV.

able systematic uncertainty compared to the bound-state
case. Nevertheless, the differences between Nmax = 12
and extrapolated energies suggest that the fastest con-
vergence rate is obtained for the strongly-bound 4He and
the slowest for the unbound 7He, as one would expect.
Finally, we note that no information on the width of the
resonance can be obtained from the NCSM calculation,
which is performed in a square-integrable HO basis.

However, we can study the structure of the 7He NCSM
eigenstates by evaluating their overlap functions with
6He+n binary-cluster channels. These overlap functions,
or cluster form factors, gλν(r) [see Eqs. (25), (A1), (A3)]
are also one of the inputs to the NCSMC calculations.
By integrating g2λν(r) over r, we obtain the spectroscopic
factors summarized in Table II. Note that there we use an
alternative coupling scheme [compared to Eq. (4)] more
commonly used in the literature for spectroscopic fac-
tors. Overall, we find a very good agreement with the
variational Monte Carlo (VMC) and GFMC results as
well as with the latest experimental value for the ground
state [39]. Interesting features to notice are the spread of
the 3/2− g.s. wave function over all three considered 6He
states with a dominance of the 2+1 and the about equal
spread of 1/2− 7He excited state between the 6He 0+ and
2+2 states. The 7He 5/2− state has about the same con-
tributions from the 2+1 and 2+2

6He states with the former
of an almost pure s=5/2 component (with s the channel
spin defined in Eq. (4)). Though spectroscopic factors
are not observable, they provide valuable information on
the structure of the wave function. In the present study,
overlap functions and spectroscopic factors are not the
final products to be compared to experiment, but rather
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7He Jπ 6He−n(lj) NCSM CK VMC GFMC Exp.

3/2−1 0+−p 3

2
0.56 0.59 0.53 0.565 0.512(18)[39]

0.64(9) [53]

0.37(7) [48]

3/2−1 2+1 −p 1

2
0.001 0.06 0.006

3/2−1 2+1 −p 3

2
1.97 1.15 2.02

3/2−1 2+2 −p 1

2
0.12 0.09

3/2−1 2+2 −p 3

2
0.42 0.30

1/2− 0+−p 1

2
0.94 0.69 0.91

1/2− 2+1 −p 3

2
0.34 0.60 0.26

1/2− 2+2 −p 3

2
0.93

5/2− 2+1 −p 1

2
0.77 0.85 0.81

5/2− 2+1 −p 3

2
0.49 0.52 0.37

5/2− 2+2 −p 1

2
0.26

5/2− 2+2 −p 3

2
1.30

3/2−2 0+−p 3

2
0.06 0.06 0.05

3/2−2 2+1 −p 1

2
1.10 1.05 1.07

3/2−2 2+1 −p 3

2
0.08 0.32 0.03

3/2−2 2+2 −p 1

2
0.03

3/2−2 2+2 −p 3

2
0.25

TABLE II: NCSM spectroscopic factors compared to Cohen-
Kurath (CK) [54] and VMC/GFMC [1, 55, 56] calculations
and experiment. NCSM calculations were performed with the
SRG-N3LO NN potential with Λ=2.02 fm−1, Nmax=12 and
the HO frequency of ~Ω=16 MeV. The CK results should in
principle be still multiplied by A/(A−1) to correct for the
center of mass motion.

inputs to more sophisticated NCSMC calculations.

B. 7He NCSM/RGM and NCSMC calculations

In the following, we present NCSMC calcula-
tion for the 7He nucleus performed within a model
space containing the six lowest negative-parity
(3/2−1 , 1/2

−, 5/2−, 3/2−2 , 3/2
−
3 , 3/2

−
4 ) and four lowest

positive-parity (1/2+, 5/2+1 , 3/2
+, 5/2+2 ) NCSM eigen-

states of 7He plus n+6He NCSM/RGM binary-cluster
channels including up to the three lowest eigenstates of
6He, i.e. 0+, 2+1 , and 2+2 . For the sake of comparison,
we will also present results obtained by retaining only
the binary-cluster portion of such a model space [i.e.,
only the second term in Eq. (21) or, equivalently, the
ansatz (3)] and solving the orthogonalized NCSM/RGM
equations of Eq. (19).
We start by studying the dependence of the 3/2− g.s.

phase shifts on the number of 6He eigenstates included in
the NCSM/RGM [panel (a)] and NCSMC [panel (b)] cal-
culations, shown in Fig. 4. Here, the channels are denoted
using the standard notation 2s+1ℓJ , e.g.,

2P3/2 for the g.s.
resonance, with the quantum numbers s, ℓ and J defined
as in Sec. II B, Eq. (4). We observe that the NCSM/RGM
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FIG. 4: (color online). Dependence of the NCSM/RGM (a)
and NCSMC (b) 6He+n phase shifts of the 7He 3/2− ground
state on the number of 6He states included in the binary-
cluster basis. The short-dashed green curve, the dashed blue
curve and the solid red curve correspond to calculations with
6He 0+ ground state only, 0+, 2+ states and 0+, 2+, 2+ states,
respectively. The SRG-N3LO NN potential with Λ = 2.02
fm−1, theNmax=12 basis size and the HO frequency of ~Ω=16
MeV were used. See text for further details.

calculation with the 6He target restricted to its ground
state does not produce a 7He 3/2− resonance (the phase
shift does not reach 90 degrees and is less than 70 de-
grees up to 5 MeV). A 2P3/2 resonance does appear once

n+6He(2+1 ) channel states are coupled to the basis, and
the resonance position further moves to lower energy with
the inclusion of the second 2+ state of 6He. On the con-
trary, the NCSMC calculation with only the ground state
of 6He already produces the 2P3/2 resonance. In fact, this

NCSMC model space is sufficient to obtain the 7He 3/2−

g.s. resonance at about 1MeV above threshold, which
is lower than the NCSM/RGM prediction of 1.39MeV
when three 6He states are included. Adding the first 2+

state of 6He generates a modest shift of the resonance
to a still lower energy while the 2+2 state of 6He has no
significant influence [see Fig. 4, panel (b)]. We further
observe that the difference of about 0.7 MeV between
the NCSM/RGM and NCSMC results for the resonance
position is due to additional correlations in the wave func-
tion brought about by the 7He eigenstates that are cou-
pled to the neutron-6He binary-cluster states in the NC-
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FIG. 5: (color online). Dependence of the NCSM/RGM (a)
and NCSMC (b) 6He+n phase shifts of the 7He 1/2− excited
state on the number of 6He states included in the binary-
cluster basis. The short-dashed green curve, the dashed blue
curve and the solid red curve correspond to calculations with
6He 0+ ground state only, 0+, 2+ states and 0+, 2+, 2+ states,
respectively. See Fig. 4 for further details.

SMC. Indeed, such A = 7 eigenstates (in the present
calculation four 3/2− states, of which only the 3/2−1 pro-
duces a substantial effect on the 2P3/2 resonance) have
the practical effect of compensating for higher excited
states of the 6He target omitted in the NCSM/RGM
sector of the basis. These omitted 6He states include
both positive-parity, some of which are shown in Fig. 3,
and negative-parity excitations such as, e.g., the 1− soft
dipole excitation etc. While NCSM/RGM calculations
with a large number of excited states of the target or
projectile can become prohibitively expensive, the cou-
pling of a few square-integrable NCSM eigenstates of the
composite system is straightforward. Because of this, the
NCSMC approach offers a superior rate of convergence
and is much more efficient, as demonstrated in Fig. 4.
A similar, although less dramatic, difference between

NCSM/RGM and NCSMC calculations is shown in Fig. 5
for the 1/2− excited state of 7He. Here, the 2P1/2 res-
onance is quite broad with a slowly increasing phase
shift. It is interesting to note that the 1/2− state couples
strongly to the 2+2 state of 6He (the spectroscopic factor
is large, see Table II). This causes a small but visible
shift of the 2P1/2 phase shift when this state is added
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FIG. 6: (color online). Dependence of the NCSMC 6He + n
phase shifts of 7He 3/2− (a), 1/2− (a) and 5/2− (b) states on
the size of the HO expansion Nmax. The

6He 0+, 2+, 2+ states
were included in the binary-cluster basis. The SRG-N3LO
NN potential with Λ = 2.02 fm−1 and the HO frequency of
~Ω=16 MeV were used.

to the NCSMC calculation in panel (b) (full vs. dashed
line). The 1/2− state presents a significant overlap also
with the 0+ and 2+1 states of 6He, and this is the reason
of its broadness.

In Fig. 6, we present the dependence of the NCSMC
2P3/2,

2P1/2 [panel (a)] and 6P5/2 [panel (b)] phase shifts
on the size of the HO basis in the range 6 ≤ Nmax ≤
12. While the variation between Nmax = 6 and Nmax =
8 curves is substantial, it becomes quite small between
Nmax = 10 and Nmax = 12 results. Based on this, we do
not expect that an Nmax = 14 calculation, which at this
time is computationally out of reach, would significantly
change the present Nmax = 12 picture.

The NCSM/RGM and NCSMC phase shifts for the
n+ 6He five P -wave and the 2S1/2 channels are shown in
Fig. 7. All curves have been obtained including the three
lowest 6He states (i.e., the 0+ ground state and the two
lowest 2+ excited states) within the Nmax = 12 HO basis.
The model space of the NCSMC calculations [panel (b)]
additionally includes ten 7He NCSM eigenstates, as de-
scribed at the beginning of this section. The dashed verti-
cal area centered at 0.43MeV indicates the experimental
centroid and width of the 7He ground state [38, 39]. As
expected from a variational calculation, the introduction
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FIG. 7: (color online). NCSM/RGM (a) and NCSMC (b)
6He+n diagonal phase shifts (except 6P3/2, which are eigen-
phase shifts) as a function of the kinetic energy in the center of
mass. The dashed vertical area centered at 0.43MeV indicates
the experimental centroid and width of the 7He ground state
[38, 39]. In all calculations the lowest three 6He states have
been included in the binary-cluster basis. The SRG-N3LO
NN potential with Λ = 2.02 fm−1 within the Nmax = 12 ba-
sis size and the HO frequency of ~Ω=16 MeV were used. See
text for further details.

of the additional square-integrable A-body basis states
|AλJπT 〉 [i.e., going from panel (a) to panel (b) of Fig. 7]
lowers the centroid values of all 7He resonances. In par-
ticular, the 3/2− ground and 5/2− excited states of 7He
are pushed toward the 6He + n threshold, closer to their
respective experimental positions. The resonance widths
also shrink toward the observed data as we discuss below.
We note that we also calculated higher partial waves, e.g.
D-waves, in both approaches. However, the correspond-
ing phase shifts are very small and do not present any
interesting structures in the energy range displayed in
Fig. 7. Therefore, we did not include them in the figure.
Unlike the P -wave resonances, the influence of the 7He
positive-parity NCSM eigenstates on these phase shifts
is rather weak.

The experimental centroid of the accepted 3/2− and
5/2− resonances in 7He as well as the possible 1/2− state
at 3.03MeV [48] are shown in Fig. 8 together with our
Nmax = 12 predictions. For NCSM/RGM and NCSMC,
the resonance centroids are calculated as the values of
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FIG. 8: (color online). Experimental and theoretical centroid
energies for 7He resonances, with the 6He + n threshold as
the energy reference. The experimental energy of the 1/2−

resonance is taken from Ref. [48]. The theoretical values for
NCSM/RGM and NCSMC correspond to the n−6He kinetic
energy in the center of mass when the derivative of the phase
shift is maximal, see text for details. The information on the
width of the states is given in Table III. The calculations are
carried out as described in Tab. I, Fig. 7 and in the text.

the kinetic energy in the center of mass Ekin for which
the first derivative of the phase shifts is maximal [57].
The resonance widths are subsequently computed from
the phase shifts according to (see, e.g., Ref. [58]):

Γ =
2

dδ(Ekin)/dEkin

∣

∣

∣

∣

Ekin=ER

, (39)

where ER is the resonance centroid, evaluated as dis-
cussed above, and the phase shift are expressed in radi-
ans. Computed widths and ER values are reported in
Table III, together with the available experimental data.
An alternative, though less general, choice for the reso-
nance energy could be the kinetic energy corresponding
to a phase shift of π/2 (dashed horizontal lines in Fig. 7).
While the procedure of Eq. (39) is safely applicable to
sharp resonances, broad resonances would in principle re-
quire an analysis of the scattering matrix in the complex
plane. Here, we are more interested in a qualitative dis-
cussion of the results, and will use the above extraction
procedure for broad resonances as well. Though the two
alternative ways of choosing ER lead to basically identi-
cal results for our calculated 3/2−1 resonance, the same
is not true for the broader 5/2− resonance and the very
broad 1/2− resonance. The less general π/2 condition,
which is not valid for broad resonances, would result in
ER ∼ 3.7 MeV and Γ ∼ 2.4 MeV for the 5/2− resonance
and ER ∼ 4 MeV (see Fig. 7) and Γ ∼ 13 MeV for the
1/2− resonance.
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Jπ experiment NCSMC NCSM/RGM NCSM

ER Γ Ref. ER Γ ER Γ ER

3/2− 0.430(3) 0.182(5) [39] 0.71 0.30 1.39 0.46 1.30

5/2− 3.35(10) 1.99(17) [59] 3.13 1.07 4.00 1.75 4.56

1/2− 3.03(10) 2 [48] 2.39 2.89 2.66 3.02 3.26

3.53 10 [52]

1.0(1) 0.75(8) [42]

TABLE III: Experimental and theoretical values for the reso-
nance centroids and widths in MeV for the 3/2− ground state
and the 5/2− and 1/2− excited states of 7He. Calculations
are carried out as described in Tab. I, Fig. 7 and in the text.

Interestingly, the NCSM eigenenergy for the 3/2−1
ground state resonance is close to the energy centroid
found within the NCSM/RGM approach. This is ac-
cidental as both calculations are deficient in different
ways. The NCSM lacks the description of long-range
correlations due to the HO basis truncation, while the
NCSM/RGM lacks a proper description of short- and
medium-range correlations due to the omission of higher
excited states of the 6He target. In the NCSMC, a sig-
nificant energy shift is brought by the coupling of the
two basis, with a quenching of the separation energy by
almost 0.7MeV, closer to the experimental findings. At
the same time, in the NCSMC calculation, the resonances
become sharper, with narrower widths, once again in a
better agreement with experiment. Our NCSMC 3/2−

g.s. resonance position and width slightly overestimate
measurement (e.g., the latest determination from the re-
coil proton tagged knockout reaction for 8He [39] finds
ER = 0.430(3) MeV and Γ = 0.182(5) MeV). At the
same time, predictions for the 5/2− resonance are lower
compared to experiment [40, 59], though our determina-
tion of the width should be take with some caution in
this case.

In all three approaches considered here, the 1/2− res-
onance is predicted below the 5/2− excited state. At the
same time one has to keep in mind that the NCSM ap-
proach is not expected to provide a reliable description
of broad resonances and that our determination of the
1/2− resonance position in the NCSM/RGM and NC-
SMC has to be taken with some caution, as explained
above. From an experimental standpoint, the situation
concerning the 1/2− resonance is not clear as discussed
in the beginning of this section and documented in Ta-
ble III. While the centroid energies determined in the
experiments of Refs. [48, 49] and [52] are comparable,
the widths are very different. Within the present de-
termination of ER and Γ, the NCSMC results are in fair
agreement with the 1/2− properties measured in the neu-
tron pick-up and proton-removal reactions experiments
of Refs. [48] and [49]. Our calculations definitely do not
support the hypothesis of a low-lying (ER∼1 MeV) nar-
row (Γ ≤ 1 MeV) 1/2− resonance [41–45].
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FIG. 9: (color online). NCSMC 6He + n 3/2− P -wave eigen-
phase shifts as a function of the kinetic energy in the center
of mass. Calculations are carried out as described in Fig. 7
(b). See text for further details.

We also note that our NCSMC calculations predict two
broad 6P3/2 resonances (dominated, respectively, by the

first and second 2+ states of 6He) at about 3.7 MeV and
6.5 MeV with widths of 2.8 MeV and 4.3 MeV, respec-
tively. As shown in Figs. 7 and 9, the corresponding
eigenphase shifts do not cross π/2. In Fig. 9, we present
all P -wave eigenphase shifts in a broader energy range
up to 10 MeV. There is a considerable mixing of the P
waves around the 3/2−2 resonance as it can be seen by
comparing the eigenphase shifts of Fig. 9 with the diag-
onal 6P3/2 and 4P3/2 phase shifts of Fig. 10. The mixing
parameter for other resonances is very small (of course,
there is no mixing below the n+6He(2+1 ) state threshold).
In experiment, there is a resonance of undetermined spin
and parity at 6.2(3) MeV with a width of 4(1) MeV [59].
The level order predicted in other theoretical calcula-

tions mostly agrees with our present findings [1, 48, 60].
The widths of the 7He states were calculated recently in
a 4He+n + n + n cluster model [60]. The 1/2− state
was found at low excitation energy (∼1.05 MeV), but
with a width of 2.19 MeV, i.e., close to what we find.
The width of the 5/2− resonance, 1.5 MeV, obtained in
Ref. [60] is also comparable to our prediction. Two 3/2−

resonances in addition to the g.s. resonance were reported
in Ref. [60]. One of them just above the 5/2− state with
a width of 1.95 MeV, while the other at the excitation en-
ergy of about 5.3 MeV and a width of 5.77 MeV. This is
qualitatively similar to our results although, in our case,
the 3/2−2 resonance is broader by 0.85 MeV.
The 7He resonances were also investigated in RGM cal-

culations of Ref. [61] using a semi-realistic NN potential.
The ordering of the resonances found in this study is the
same as in ours and the 2P3/2 g.s. resonance phase shift
is also in close agreement with our results. On the other
hand, unlike in our calculations, the 1/2− and 5/2− P -
wave resonances of Ref. [61] do not cross π/2. While the
6P3/2 and 4P3/2 diagonal phase shifts qualitatively agree
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diagonal P -wave phase shifts as a function of the kinetic en-
ergy in the center of mass. The calculation is carried out as
described in Fig. 7 (b). See text for further details.

with ours, interestingly, the 5/2− resonance appears in
the 4P5/2 partial wave rather than in the 6P5/2, as found

in our calculations. The 5/2− P -waves are reversed in
Ref. [61] compared to our calculations (see Fig. 10 for
the 6P3/2,

4P3/2,
6P5/2, and

4P5/2 diagonal phase shifts).
The Helium isotope g.s. properties, including those

of 7He, were also recently investigated within the com-
plex coupled-cluster method [62]. Using a realistic low-
momentum NN interaction, the coupled-cluster singles
and doubles (CCSD) calculations underbinded substan-
tially the ground states of 3−10He compared to experi-
ment. However, they correctly predicted 5He and 7He
unstable with respect to neutron emission. The width of
the 7He ground state resonance, 0.26 MeV is quite close
to that calculated here.
Finally, we note that the NCSMC g.s. resonance en-

ergy, 0.71 MeV, is lower but still compatible with the
extrapolated NCSM value of 0.98(29) MeV (see Tables I
and III).

IV. CONCLUSIONS AND OUTLOOK

We introduced a new unified approach to nuclear
bound and continuum states based on the coupling of
a square-integrable basis (A-body NCSM eigenstates),
suitable for the description of many-body correlations,
and a continuous basis (NCSM/RGM cluster states) suit-
able for a description of long-range correlations, clus-
ter correlations and scattering. This ab initio method,
which we call no-core shell model with continuum, is
capable of describing efficiently: i) short- and medium-
range nucleon-nucleon correlations thanks to the large
HO basis expansions used to obtain the NCSM eigen-
states, and 2) long-range cluster correlations thanks to
the NCSM/RGM cluster-basis expansion. As a conse-

quence, its convergence properties are superior to either
NCSM or NCSM/RGM.
We demonstrated the potential of the NCSMC in cal-

culations of 7He resonances. Starting from a realistic soft
SRG-N3LO NN potential that describes accurately two-
nucleon properties and, with the choice of Λ = 2.02 fm−1

for the SRG evolution parameter, also predicts 3H and
4He binding energies close to experiment, we calculated
6He and 7He eigenstates in the NCSM and used them
as input to the coupled-channel NCSMC equations. We
found the 6He g.s. energy in very good agreement with
experiment. The results for the 3/2− g.s. resonance as
well as for the well-established 5/2− resonance of 7He are
in reasonable agreement with experiment. Our results
for the controversial 1/2− resonance are in fair agree-
ment with the neutron pick-up and proton-removal re-
actions experiments of Refs. [48, 49]. Our calculations
definitely do not support the hypothesis of a low lying
(ER∼1 MeV) narrow (Γ ≤ 1 MeV) 1/2− resonance. We
also predict two broad currently unobserved 6P3/2 reso-
nances at about 3.7 MeV and 6.5 MeV, respectively.
The NCSMC calculations do not involve any ad-

justable parameter except for those used in the construc-
tion of the inputNN (or three-nucleon) potentials. Com-
putations depend on the size of the HO basis, the HO
frequency, and the number of eigenstates included in the
model space. We investigate the convergence behavior
of the approach with respects to these expansions. Due
to the over-completeness of the NCSMC basis, the con-
vergence rate is superior to that achievable with either
NCSM or NCSM/RGM. The advantages of the NCSMC
are expected to become even more evident in calculations
with composite projectiles (such as deuteron, 3H, or 3He)
that require the use of a large number of pseudostates in
the NCSM/RGM (or other cluster-based approaches) to
account for virtual breakup effects. The contribution of
the pseudostates is expected to be suppressed in the NC-
SMC approach. Extension of the NCSMC formalism to
the case of composite projectiles, the inclusion of three-
nucleon interactions, and the coupling of three-body clus-
ters are under way.
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Appendix A

In this appendix we briefly outline the explicit steps for the derivation of the orthogonalized cluster form factors of
Eq. (25) and (26) and provide their algebraic expressions.
The orthogonalized cluster form factor in r-space representation of Eq. (25) reads

ḡλν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N
− 1

2

ν′ν (r
′, r)

=
∑

n∈P

Rnℓ(r)
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2

ν′n′,νn (A1)

=
∑

n∈P

Rnℓ(r) ḡλνn , (A2)

where the orthogonalized cluster form factor in the model-space is given by the model-space non-orthogonalized cluster
form factor times the model-space norm kernel:

ḡλνn =
∑

ν′n′∈P

〈AλJπT |Âν′ΦJπT
ν′n′ 〉 N− 1

2

ν′n′,νn =
∑

ν′n′∈P

gλν′n′ N− 1
2

ν′n′,νn . (A3)

At the same time, the translational-invariant non-orthogonalized cluster form factors in the model space, gλνn, can
be conveniently derived starting from the Slater-determinant (SD) NCSM eigenstates,

|AλJπT 〉SD = |AλJπT 〉ϕ00(~R
(A)
c.m.) , (A4)

and the SD channel states

|ΦJπT
νn 〉SD =

[

(|A− a α1I
π1
1 T1〉SD|a α2I

π2
2 T2〉)(sT )

Yℓ(R̂
(a)
c.m.)

](JπT )

Rnℓ(R
(a)
c.m.) , (A5)

and removing the spurious motion of the center of mass. Here, the c.m. coordinates of Eqs. (A4) and (A5) are given
by

~R(A)
c.m. =

1√
A

A
∑

i=1

~ri , ~R(a)
c.m. =

1√
a

A
∑

i=A−a+1

~ri , (A6)

and ϕ00(~R
(A)
c.m.) is the HO wave function R00(R

(A)
c.m.)Y00(R̂

(A)
c.m.). The resulting expression for the non-orthogonalized

cluster form factor in the single-nucleon projectile (a = 1) basis is:

gλνn = 〈AλJπT |ÂνΦ
JπT
νn 〉

=
1

〈nℓ00, ℓ|00nℓ, ℓ〉 1
(A−1)

SD〈AλJπT |ÂνΦ
JπT
νn 〉SD

=
1

〈nℓ00, ℓ|00nℓ, ℓ〉 1
(A−1)

1

Ĵ T̂

∑

j

(−1)I1+J+j ŝĵ

{

I1
1
2 s

ℓ J j

}

SD〈AλJπT |||a†
nℓj 1

2

|||A− 1α1I
π1

1 T1〉SD . (A7)

The Moshinsky brackets 〈nℓ00, ℓ|00nℓ, ℓ〉 allows us to transform from the SD to the Jacobi-coordinate states. This
expression was first derived in Ref. [36] where further details on the derivation can be found.
The orthogonalized coupling form factor in r-space representation of Eq. (26) reads

h̄λν(r) =
∑

ν′

∫

dr′r′
2〈AλJπT |Ĥ|Âν′ΦJπT

ν′r′ 〉 N
− 1

2

ν′ν (r
′, r)

=
∑

n∈P

Rnℓ(r)
∑

ν′n′∈P

〈AλJπT |Ĥ|Âν′ΦJπT
ν′n′ 〉 N− 1

2

ν′n′,νn +Rnmax+1 ℓ(r)〈AλJπT |ÂνΦ
JπT
νnmax

〉〈nmaxℓ|T̂rel|nmax + 1 ℓ〉

=
∑

n∈P

Rnℓ(r)h̄λνn +Rnmax+1 ℓ(r) 〈nmaxℓ|T̂rel|nmax + 1 ℓ〉 gλνnmax
, (A8)
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where

h̄λνn =
∑

ν′n′∈P

〈AλJπT |H̄|Âν′ΦJπT
ν′n′ 〉N− 1

2

ν′n′,νn ≡
∑

ν′n′∈P

hλν′n′N− 1
2

ν′n′,νn (A9)

is the orthogonalized coupling form factor in the model space. In deriving the above expression, one has to pay
attention in taking into account the contribution of transitions to basis states outside of the model space brought
about by the relative kinetic-energy operator. The model-space non-orthogonalized coupling form factor hλνn can be
derived in a similar fashion as Eq. (A8), and is given by:

hλνn = 〈AλJπT |Ĥ|ÂνΦ
JπT
νn 〉

=
∑

ν′

∑

n′∈P

gλν′n′ 〈n′ℓ′|T̂rel|nℓ〉+ gλνn Eν

+
1

〈nℓ00, ℓ|00nℓ, ℓ〉 1
(A−1)

∑

j

(−1)I1+J−j ŝ

{

I1
1
2 s

ℓ J j

}

1

2
√
2

×
∑

J′T ′

∑

(nlj)abc

Ĵ ′T̂ ′

Ĵ T̂

√

1 + δnalaja,nblbjb

√

1 + δnclcjc,nℓj

× 〈(nalaja
1
2 , nblbjb

1
2 )J

′T ′|V |(nclcjc
1
2 , nℓj

1
2 )J

′T ′〉

× SD〈AλJπT |||((a†
nalaja

1
2

a†
nblbjb

1
2

)(J
′T ′)ãnclcjc

1
2
)(j

1
2 )|||(A− 1)α1I1T1〉SD . (A10)

We note that the point-Coulomb contribution introduced in Eq. (11) is omitted in the above expressions for simplicity.
It is zero in the present application to 7He. Finally, Eν is the sum of the eigenergies of the two clusters.
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[35] E. D. Jurgenson, P. Navrátil and R. J. Furnstahl, Phys.
Rev. C 83, 034301 (2011).
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